Sadlier Math[™] Correlation to the 2017 Massachusetts Mathematics Curriculum Framework Grade 4 Learn more at www.SadlierSchool.com/SadlierMath and Sadielin" are registered trademarks of William H. Sadiler, Inc. Sadiler Math" is a trademark of William H. Sadiler, Inc. All rights reserved. May be reproduced for educational use (not commercial use). **OPERATIONS AND ALGEBRAIC THINKING** | | Grade 4 Content Standards | Sadlier Math, Grade 4 | | | |----|--|--|--|--| | A. | Use the four operations with whole numbers t | o solve problems. | | | | 1. | Interpret a multiplication equation as a comparison, e.g., interpret $35 = 5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 . Represent verbal statements of multiplicative comparisons as multiplication equations. | Chapter 4: 4-5
Chapter 5: 5-5 | | | | 2. | Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison. | Chapter 4: 4-5 Chapter 5: 5-5 Chapter 7: 7-6 Chapter 8: 8-8 | | | | 3. | Solve mult-istep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. | Chapter 2: 2-1 through 2-3 Chapter 3: 3-1 & 3-6 Chapter 4: 4-4 Chapter 7: 7-3 Chapter 8: 8-1 & 8-3 | | | | | a. Know multiplication facts and related division facts through 12 x 12. | Grade 3: Chapter 5: 5-1 thru 5-5 Chapter 6: 6-1 thru 6-6 Chapter 7: 7-1 thru 7-5 Chapter 8: 8-1 thru 8-5 Grade 4: Chapter 4: 4-1 | | | | B. | B. Gain familiarity with factors and multiples. | | | | | 4. | Find all factor pairs for a whole number in the | Chapter 9: 9-1 through 9-5 | | | range 1-100. Recognize that a whole number is a multiple of each of its factors. Determine continued | NBT | | |-----|--| | | | | | | | | | | | | | OPERATIONS AND ALGEBRAIC THINKING | | 4.0A | | |-----------------------------------|---|------------------------------------|--| | Grade 4 Content Standards | | Sadlier Math, Grade 4 | | | rar
dig
wh | nether a given whole number in the
nge 1-100 is a multiple of a given one-
git number. Determine whether a given
nole number in the range 1-100 is prime or
emposite. | | | | C. Generate and analyze patterns. | | | | | fol | enerate a number or shape pattern that
llows a given rule. Identify apparent
atures of the pattern that were not explicit | Chapter 7: 7-5
Chapter 17: 17-5 | | ### NUMBER AND OPERATIONS IN BASE TEN **Grade 4 Content Standards** Sadlier Math, Grade 4 A. Generalize place value understanding for multi-digit whole numbers less than or equal to 1,000,000. 1. Recognize that in a multi-digit whole number, Chapter 1: 1-2 & 1-3 a digit in any place represents 10 times as much as it represents in the place to its right. For example, recognize that 700 ÷ 70 = 10 by applying concepts of place value and division. 2. Read and write multi-digit whole numbers Chapter 1: 1-1 through 1-6 using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons. in the rule itself. For example, given the rule "Add 3" and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way. **NUMBER AND OPERATIONS IN BASE TEN** | | seawed May be reproduced for educational use (not commercial use) | |--|---| | | All rights | | | lier Mathivis a trademark of William H. Sadlier Inc. | | | lnc Sadlier | | | and Sadlier® are registered trademarks of William H. Sadlier Inc. | | | | | Grade 4 Content Standards | | Sadlier Math, Grade 4 | | |---|---|---|--| | 3. | Use place value understanding to round multi-digit whole numbers to any place. | Chapter 1: 1-5 | | | B. Use place value understanding and properties of operations to perform multi-digit arithmetion whole numbers less than or equal to 1,000,000. | | | | | 4. | Fluently add and subtract multi-digit whole numbers using the standard algorithm. | Chapter 2: 2-2, 2-4 through 2-6
Chapter 3: 3-2 through 3-5 | | | 5. | Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. | Chapter 4: 4-1 through 4-3 Chapter 5: 5-1 through 5-5 Chapter 6: 6-1 through 6-5 Chapter 8: 8-7 | | | 6. | Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. | Chapter 7: 7-1, 7-2 & 7-4
Chapter 8: 8-1 through 8-7 | | ### **NUMBER AND OPERATIONS — FRACTIONS** 4.NF **Grade 4 Content Standards** Sadlier Math, Grade 4 A. Extend understanding of fraction equivalence and ordering for fractions with denominators 2, 3, 4, 5, 6, 8, 10, 12, and 100. 1. Explain why a fraction a/b is equivalent to a fraction $(n \times a)/(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the continued Chapter 10: 10-1 through 10-6 | • | |---| | N | NUMBER AND OPERATIONS — FRACTIONS | | |----|---|--------------------------------| | | Grade 4 Content Standards | Sadlier Math, Grade 4 | | | same size. Use this principle to recognize and generate equivalent fractions, including fractions greater than 1. | | | 2. | Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as 1/2. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model. | Chapter 10: 10-7 through 10-11 | B. Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers for fractions with denominators 2, 3, 4, 5, 6, 8, 10, 12, and 100. | 3. | Understand | a fraction a | <i>b</i> with <i>a</i> > 1 | as a sum | of fractions 1/ | /b. | |----|------------|--------------|----------------------------|----------|-----------------|-----| | | | | | | | | | a. | Understand addition and subtraction of | |----|---| | | fractions as joining and separating parts | | | referring to the same whole. (The whole | | | can be a set of objects.) | Chapter 11: 11-1 through 11-5 Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Chapter 11: 11-2 through 11-4 Examples: 3/8 = 1/8 + 1/8 + 1/8 ; 3/8 = 1/8 + 2/8 ; 21/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8. Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations continued Chapter 10: 10-9 Chapter 11: 11-6 through 11-8 | NU | IMBER AND OPERATIONS — FRACT | IONS 4.NF | |----|--|--| | | Grade 4 Content Standards | Sadlier Math, Grade 4 | | | and the relationship between addition and subtraction. | | | C | d. Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using drawings or visual fraction models and equations to represent the problem. | Chapter 11: 11-1 through 11-5 | | 1 | Apply and extend previous understandings of r
number. | nultiplication to multiply a fraction by a whole | | 6 | a. Understand a fraction a/b as a multiple of 1/b. For example, use a visual fraction model to represent 5/4 as the product 5 × (1/4), recording the conclusion by the equation 5/4 = 5 × (1/4). | Chapter 12: 12-1 through 12-4 | | k | o. Understand a multiple of <i>a/b</i> as a multiple of 1/ <i>b</i> , and use this understanding to multiply a fraction by a whole number. | Chapter 12: 12-1 through 12-5 | | | For example, use a visual fraction model to express $3 \times (2/5)$ as $6 \times (1/5)$, recognizing this product as $6/5$. (In general, $n \times (a/b) = (n \times a)/b$.) | | | (| c. Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. | Chapter 12: 12-1 through 12-7 | | | For example, if each person at a party will eat 3/8 of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie? | | | D | | |----|--| | | | | to | | | NUMBER AND OPERATIONS — FRACTIONS 4.NF | | | 4.NF | |--|---|-------------------------------|------| | | Grade 4 Content Standards | Sadlier Math, Grade 4 | | | C. Understand decimal notation for fractions, and compare decimal fractions. | | | | | 5. | Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100. ²⁰ | Chapter 13: 13-1 through 13-5 | | | | For example, express 3/10 as 30/100, and add 3/10 + 4/100 = 34/100. | | | | 6. | Use decimal notation for fractions with denominators 10 or 100. | Chapter 13: 13-3 through 13-5 | | | | For example, rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line diagram. | | | | 7. | Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual model. | Chapter 13: 13-6 & 13-7 | | #### **MEASUREMENT AND DATA** **4.ML** **Grade 4 Content Standards** Sadlier Math, Grade 4 # A. Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a continued Chapter 14: 14-1 through 14-10 ²⁰Students who can generate equivalent fractions can develop strategies for adding fractions with unlike denominators in general. But addition and subtraction with unlike denominators in general is not a requirement at this grade. |] | |---| | MEASUREMENT AND DATA | | 4.MD | |----------------------|---|--| | | Grade 4 Content Standards | Sadlier Math, Grade 4 | | | smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), | | | 2. | Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. | Chapter 14: 14-1 through 14-9
Chapter 15: 15-1 through 15-3 | | 3. | Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor. (Note: When finding areas of rectangular regions answers will be in square units.) For example, the area of a 1 cm x 1 cm rectangular region will be 1 square centimeter (1 cm², students are not expected to use this notation.) When finding the perimeter of a rectangular region answers will be in linear units. For example, the perimeter of the region is: 1cm + 1cm + 1cm + 1cm = 4 cm or 2(1cm) + 2(1cm) = 4 cm). | Chapter 17: 17-6 & 17-7 | 4.MD | 4 | | |------|---| mmon | İ | ## MEASUREMENT AND DATA Sadlier Math, Grade 4 #### B. Represent and interpret data. Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots. **Grade 4 Content Standards** For example, from a line plot (dot plot) find and interpret the difference in length between the longest and shortest specimens in an insect collection. Chapter 15: 15-6 & 15-7 #### C. Geometric measurement: understand concepts of angle and measure angles. - 5. Recognize angles as geometric shapes that are formed wherever two rays share a commor endpoint, and understand concepts of angle measurement: - a. An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through 1/360 of a circle is called a "one-degree angle," and can be used to measure angles. Chapter 16: 16-2 b. An angle that turns through *n* one-degree angles is said to have an angle measure of *n* degrees. Chapter 16: 16-1 & 16-2 6. Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure. Chapter 16: 16-1 through 16-3 7. Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find continued Chapter 16: 16-4 **MEASUREMENT AND DATA** | MEASUREMENT AND DATA | | שויו. ד | | |---|--|-------------------------------|--| | | Grade 4 Content Standards | Sadlier Math, Grade 4 | | | | unknown angles on a diagram in real-world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure. | | | | G | GEOMETRY 4.G | | | | | Grade 4 Content Standards | Sadlier Math, Grade 4 | | | A. Draw and identify lines and angles, and classify shapes by properties of their lines and angles. | | | | | 1. | Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures. | Chapter 16: 16-1 through 16-6 | | | 2. | Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles. | Chapter 17: 17-1 through 17-3 | | | 3. | Recognize a line of symmetry for a two-
dimensional figure as a line across the
figure such that the figure can be folded
along the line into matching parts. Identify
line-symmetric figures and draw lines of
symmetry. | Chapter 17: 17-4 | |